Placement 2025 Scholarship: Your Future Starts Here | 6 Guaranteed Job Interviews | Limited to 100 seats. Apply Now

00D 02H 29M 55S

Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

All Courses

All Courses

logo

CHOOSE A CATEGORY

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

Top Job Leading Courses

Automotive

CFD

FEA

Design

MBD

Med Tech

Courses by Software

Design

Solver

Automation

Vehicle Dynamics

CFD Solver

Preprocessor

Courses by Semester

First Year

Second Year

Third Year

Fourth Year

Courses by Domain

Automotive

CFD

Design

FEA

Tool-focused Courses

Design

Solver

Automation

Preprocessor

CFD Solver

Vehicle Dynamics

Machine learning

Machine Learning and AI

POPULAR COURSES

coursePost Graduate Program in Hybrid Electric Vehicle Design and Analysis
coursePost Graduate Program in Computational Fluid Dynamics
coursePost Graduate Program in CAD
coursePost Graduate Program in CAE
coursePost Graduate Program in Manufacturing Design
coursePost Graduate Program in Computational Design and Pre-processing
coursePost Graduate Program in Complete Passenger Car Design & Product Development
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. Anish Augustine/
  3. Week - 5 - Modelling Spotwelds

Week - 5 - Modelling Spotwelds

                                                                               COMPARISON OF SPOTWELD MODELLED AS BEAM AND…

    • Anish Augustine

      updated on 09 Nov 2020

                                                                                   COMPARISON OF SPOTWELD MODELLED AS BEAM AND HEXA ELEMENT USING LS-DYNA

    AIM: To model spot weld as beam and hexa elements and create a complete simulation file for crash analysis from the given FE model of assembly of parts and produce the following deliverables.

    1. Input .k file and output files (d3plot, glstat, sleout, rcforc, secforc, swforc)
    2. Animation of the final simulation
    3. Compare axial force, shear force, resultant force and spotweld length plots of spotweld modelled as beam and hexa element.
    4. Plot of all energies (total, internal, kinetic, hourglass, sliding)
    5. Cross-sectional force generated in the middle of the given assembly of parts (along its length)
    6. Acceleration plot of a node in the middle of the given assembly of parts (along its length)
    7. Maximum directional stress and strain along the length of the given assembly of parts (X strain, Y strain etc)

    INTRODUCTION:

    Spot welding is one of the oldest welding methods for joining metal plates using strong current and is widely used in all industries such as automobile, shipbuilding and aerospace sectors. In this simulation the spot weld is modelled as beam and hexa element and results are compared for both the cases.

    Following are the different assumptions and information required:

    1. The given assembly of parts should crash into a rigid wall created using *RIGIDWALL_ keyword.
    2. Material for the given assembly of parts is steel.
    3. Thickness of the given assembly of parts is 1.5 mm.
    4. Initial velocity for the given assembly of parts is around 50 kmph.
    5. The unit system used is gm-mm-ms.
    6. The spotweld is modelled as case (i) beam element, (ii) hexa element.
    7. The simulation is carried out for both the cases and results are compared and interpreted.

    PROCEDURE:

    The given LS-Dyna keyword file is opened in LS-PrePost using option File>Open>LS-Dyna Keyword File as shown in the fig. 1.

    Fig.1. Imported FE model.

                                                                                                                                            Fig.1. Imported FE model.

    SPOTWELD MODELLING:

    Mesh>EleGen>Beam>Two_Node_Sets.

    Fig.2.1 Beam element.

                                                                                                                                    Fig.2.1 Beam element.

    Mesh>EleEdit>Create>Hexa.

    Fig.2.2 Hexa element.

                                                                                                                                   Fig.2.2 Hexa element.

    The spotwelds are modelled as case (i) beam element (ii) hexa element. In the first case six beam elements are created as shown in fig. 2.1. In the second case using element edit option the hexa elements are created in the position of beam elements as shown in fig. 2.2.

    PART DEFINITION:

    The part is defined by assigning the section properties and material properties. In this model there are three parts i.e. top bracket, bottom bracket and spotweld.

    Section properties:

    Keyword manager>SECTION>SHELL.

    Fig.3.1. Section shell.

                                                                                                                                             Fig.3.1. Section shell.

    The section properties of brackets are assigned as shell element with 1.5 mm thickness and ELFORM=16, Fully integrated shell element (very fast).

    Keyword manager>SECTION>BEAM.

    Fig.3.2. Section beam.

                                                                                                                                     Fig.3.2. Section beam.

    The section properties of spot weld in the first case are assigned as beam element with 3 mm thickness and ELFORM=9, spotweld beam, see *MAT_SPOTWELD (Type 100)

    Keyword manager>SECTION>SOLID.

    Fig.3.3. Section solid.

                                                                                                                               Fig.3.3. Section solid.

    The section properties of spot weld in the second case are assigned as solid element and ELFORM=1, constant stress solid element (default),

    Material properties:

    The brackets and spot welds are assigned with steel material with following parameters as shown in table.

    Steel material properties    Value
    Mass Density [gm/mm3]    7.85e-3
    Young’s Modulus [MPa]    210e3
    Poisson's ratio    0.3
    Yield stress [MPa]    250
    Tangent modulus [MPa]    210e2

     

    Keyword manager>MAT>024-PIECEWISE_LINEAR_PLASTICITY.

    Fig.4.1. Steel material

                                                                                                                  Fig.4.1. Steel material

    MAT24 (Piece wise linear plasticity) material card is used to assign the steel material properties to the assembly of parts. The MAT24 represent Piecewise linear isotropic plasticity. With this material model it is possible to consider the effect of the strain rate.

    Keyword manager>MAT>100-SPOTWELD.

    Fig.4.2. Spot weld material.

                                                                                                             Fig.4.2. Spot weld material.

    This material model applies to beam element type 9 and to solid element type 1. The failure models apply to both beam and solid elements.

    Part definition:

    Keyword manager>PART

    Top bracket

    Bottom bracket

    Spotweld

                                                                                            Fig.5. Part definition of assembly of parts and spot weld.

    BOUNDARY CONDITIONS:

    Rigid wall:

    Create Entity>Rigidwall>cre>Planar>1n+NL

     Fig.6. Rigid wall.

                                                                                                                               Fig.6. Rigid wall.

    The rigid wall is created at a distance of 10 mm away from the brackets.

    Initial Velocity:

    Keyword manager>Initial>Velocity

    Fig.7. Initial velocity.

                                                                                                                 Fig.7. Initial velocity.

    The brackets are assigned with initial velocity of Vx= 13.88 mm/ms is applied along x direction to crash against the rigid wall.

    CONTACT CONDITION:

    Keyword manager>CONTACT>AUTOMATIC_SINGLE_SURFACE

    Fig.8.1. Contact between Rigid wall and brackets.

                                                                                                               Fig.8.1. Contact between Rigid wall and brackets.

    The AUTOMATIC_SINGLE_SURFACE contact type is assigned for the contact between rigid wall and brackets. It is quite helpful to apply this contact method in the crash models because all the elements are included in one single set and LS-DYNA considers also when a part comes into contact with itself. The FS and FD that are static and dynamic friction coefficient with a value of 0.08 is entered in the contact card.

    Keyword manager>CONTACT>TIED_SHELL_EDGE_TO_SURFACE

    Fig.8.2. Contact between Spotweld beam element and brackets.

                                                                                                      Fig.8.2. Contact between Spotweld beam element and brackets.

    The TIED_SHELL_EDGE_TO_SURFACE contact type is assigned for the contact between spotweld beam elements and brackets.

    Keyword manager>CONTACT>SPOTWELD

    Fig.8.3. Contact between Spotweld solid element and brackets.

                                                                                                       Fig.8.3. Contact between Spotweld solid element and brackets.

    The SPOTWELD contact type is assigned for the contact between spotweld solid elements and brackets.

    CONTROL FUNCTION:

    Keyword manager>CONTROL>ENERGY

    Fig.9. Control energy.

                                                                                                 Fig.9. Control energy.

    The control energy function is enabled for computing the hourglass energy, stonewall energy and sliding energy.

    Keyword manager>CONTROL>TERMINATION

    Fig.10. Control termination.

                                                                                               Fig.10. Control termination.

    The control termination function is enabled to specify the end time of simulation. The termination time is set for 5 ms to capture the effect of brackets striking the rigid wall.

    DATABASE OPTION:

    Keyword manager>DATABASE>BINARY_D3PLOT

    Fig.11. Database binary_D3plot.

                                                                                                Fig.11. Database binary_D3plot.

    The time step value of 0.1 ms is given for the BINARY_D3PLOT and 0.01 ms in the DATABASE_ASCII option for GLSAT, MATSUM, NODOUT, RCFORC, RWFORC, SECFORC, SWFORC and SLEOUT.

    Keyword manager>DATABASE>EXTENT_BINARY

    Fig.12. Database binary extent.

                                                                                                Fig.12. Database binary extent.

    DATABASE_EXTENT_BINARY card with STRFLG =1, is used to compute the elastic strain in the model.

    Keyword manager>DATABASE>HISTORY_NODE

    Fig.13. Database history node.

                                                                                             Fig.13. Database history node.

    DATABASE_HISTORY_NODE card is used to compute the acceleration of a 501385 node in the model.

    Keyword manager>DATABASE>CROSS_SECTION_PLANE

    Fig.14. Data base cross section plane.

                                                                                            Fig.14. Data base cross section plane.

    DATABASE_CROSS_SECTION_PLANE card is used to compute the sectional force of the model.

    The keyword file created is checked for errors using the option keyword manager>model check. The keyword file is saved using ‘.k’ extension and is made to run in the solver by getting normal termination message for both the cases i.e. (i) Spot weld modelled as beam element, (ii) Spot weld modelled as hexa element

    RESULTS:

    The D3plot output file is opened in LS-PrePost using option File>open>LS-Dyna binary plot.

    1. The animation of Von-Mises stress contour is as shown below.

    15.1. v-m stress of spotweld modelled as beam15.2. v-m stress of spotweld modelled as solid

                                                                 case (i)                                                                                                                                      case (ii)

    2. The animation of Effective plastic strain contour is as shown below

    2.1. Eff plastic strain case (i)2.2. Eff plastic strain solid

                                                                 case (i)                                                                                                                                        case (ii)

    3. Plot of Axial force in spotweld

    Fig.15.1 Plot of axial force in spotweld modelled as beam element.

                                                                                                                           Fig.15.1 Plot of axial force in spotweld modelled as beam element.

    Fig.15.2 Plot of axial force in spotweld modelled as hexa element

                                                                                                                Fig.15.2 Plot of axial force in spotweld modelled as hexa element

    In the first case the axial force transferred to the spot weld gradually fluctuates with a maximum value of 1.65 kN. In the second case the axial force transferred to the spot weld rapidly fluctuates with a maximum value of 0.848 kN comparatively less than the first case, since the spotweld is modelled as solid hexa element which is rigid compared to beam element.

    4. Plot of Shear force in spotwelds

    Fig.16.1 Plot of shear force in spotweld modelled as beam element

                                                                                                               Fig.16.1 Plot of shear force in spotweld modelled as beam element

    Fig.16.2 Plot of shear force in spotweld modelled as hexa element

                                                                                                               Fig.16.2 Plot of shear force in spotweld modelled as hexa element

    In the first case the shear force generated during collision increases suddenly to value of 1.06 kN and thereafter decreases gradually. In the second case the shear force generated during collision increases suddenly to value of 1.9 kN and thereafter fluctuates till rebounding.

    5. Plot of Resultant force in spotwelds

    Fig.17.1 Plot of resultant force in spotweld modelled as beam element

                                                                                                           Fig.17.1 Plot of resultant force in spotweld modelled as beam element

    Fig.17.2 Plot of resultant force in spotweld modelled as hexa element

                                                                                                        Fig.17.2 Plot of resultant force in spotweld modelled as hexa element

    In the first case the resultant force generated in the spot weld gradually increases during collision and fluctuates with maximum value of 1.79 kN. In the second case the resultant force generated in the spot weld increases suddenly during collision and fluctuates with a maximum value of 1.91 kN.

    6. Plot of Length of spotwelds

    Case (i)

                                                                                                                                                Case (i)

    Case (ii)

                                                                                                                                         Case (ii)

                                                                                                                          Fig.18 Plot of spotweld length

    From the graph for the first case the length of the spot weld is gradually increasing till a time of 2.48 ms, since the spotweld is modelled as 1D beam element. In the second case the length of spot weld remains constant since it is modelled as solid hexa element and is able to withstand the force generated during the collision.

    7. Global energy plots

    The energy plots comprising of kinetic energy, internal energy, total energy, hourglass energy, sliding energy and stonewall energy were plotted for both the cases of spotweld. The graph represents an energy balance of a dynamic test on an assembly of parts and it can be noted that as the kinetic energy decrease, the internal energy increases as expected from the theory. The other important things to consider are that the total energy has to remain constant and the sliding interface must remain low.

    Case (i)

                                                                                                                                             Case (i)

    Case (ii)

                                                                                                                                            Case (ii)

                                                                                                                               Fig.19. Global energy plots

    From the energy plot graph, it is observed that for the first case the kinetic energy is reduced during the time of collision to a value of 73.9x103 N-mm and the internal energy is increased to a value of 68x103 N-mm.  For the second case the kinetic energy is reduced during the time of collision to a value of 72.7x103 N-mm and the internal energy is increased to a value of 67.9x103 N-mm.

    8. Sectional force plots

    Case (i)

                                                                                                                                                          Case (i)

    Case (ii)

                                                                                                                                                   Case (ii)

                                                                                                                            Fig.20. Plot of sectional resultant force.

    In the first case a resultant sectional force of 5.7 KN is developed during the collision with rigid wall and increases to a maximum of 9.81 KN at time 1.67 ms and decreases while the crash box is rebounced.

    In the second case a resultant sectional force of 10.4 KN is developed during the collision with rigid wall and increases to a maximum of 10.8 KN at time 1.69 ms and decreases while the crash box is rebounced.

    9. Acceleration plot of a node

    The resultant acceleration is plotted for a node 501385 in the assembly of parts.

    Case (i)

                                                                                                                                                      Case (i)

    Case (ii)

                                                                                                                                                 Case (ii)

                                                                                                               Fig.21. Plot of resultant acceleration of a node in the model.

    In the first case a resultant acceleration of 106 mm/ms2 is developed during the collision with rigid wall and increases to a maximum of 733 mm/ms2 at time 3.54 ms and decreases while the brackets are rebounced.

    In the second case a resultant acceleration of 358 mm/ms2 is developed during the collision with rigid wall and increases to a maximum of 1060 mm/ms2 at time 4.78 ms and decreases while the brackets are rebounced.

    10. Maximum directional stress and strain along the length of the assembly of parts.

      Case               Maximum Stress, MPa                   Maximum Strain
    X-direction Y-direction Z-direction X-direction Y-direction Z-direction
        1 535.9
    in Element
    100988
    509.3
    in Element
    101737
    466
    in Element
    104313
    0.0131
    in Element
    104316
    0.01
    in Element
    104318
    0.0137
    in Element
    102392
        2 457.8
    in Element
    102388
    322.8
    in Element
    107725
    342
    in Element
    100921
    0.0065
    in Element
    101601
    0.0073
    in Element
    100953
    0.0102
    in Element
    101660

     

    11. Plot of v-m stress vs effective plastic strain

    Case (i)

                                                                                                                                                    Case (i)

    Case (ii)

                                                                                                                                            Case (ii)

                                                                                                                   Fig.22 Plot of v-m stress vs Effective plastic strain.

    The v-m stress vs effective plastic strain is plotted for the element 101712. From the graph, the maximum stress generated in element 101712 for the first case is 608 MPa and for the second case is 310 MPa which is greater than the yield stress value hence the thickness of the model has to be increased.

    CONCLUSION:

    1. The keywords necessary to build the spot weld modelling analysis was created from scratch.
    2. The model was solved successfully and the results are compared for both the cases i.e. (i)spotweld modelled as beam element (ii) Spotweld modelled as hexa element.
    3. The force transferred in the first case is better than the second case.
    4. The maximum stress and strain induced in the first case is more compared to second case.
    5. The deformation of the spotweld is more in the first case compared to second case.
    6. The first case is preferred for ease modelling with less computional time but for better results second case is preferred.
    7. Learned to build a solver deck for modelling spotweld as beam and hexa element for crash analysis in LS-Dyna and extract the outputs to interpret and compare the results.

    Google Drive Link:https://drive.google.com/drive/folders/1ET8ZxjSHF-9sCIeARe2N_D43oo5CffG-?usp=sharing

    Leave a comment

    Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

    Please  login to add a comment

    Other comments...

    No comments yet!
    Be the first to add a comment

    Read more Projects by Anish Augustine (38)

    Week 11 Car Crash simulation

    Objective:

    CAR CRASH SIMULATION USING ANSYS WORKBENCH OBJECTIVE 1. To simulate car crash for different thickness of car body, Case-1: Thickness=0.3 mm. Case-2: Thickness=0.7 mm. Case-3: Thickness=1.5 mm. 2. To find out Total deformation and Equivalent stress developed in car body for each case and compare the results. 1. THEORY 1.1…

    calendar

    14 Jul 2021 09:52 AM IST

    • CAE
    Read more

    Week 10 Bullet penetrating a Bucket Challenge

    Objective:

    SIMULATION OF BULLET PENETRATING INTO A BUCKET USING ANSYS WORKBENCH OBJECTIVE To simulate bullet penetrating into a bucket for different cases of bucket material, Case-1: Aluminium Alloy NL Case-2: Copper Alloy NL Case-3: Stainless Steel NL To find out Total deformation and Equivalent stress developed in bucket for…

    calendar

    19 Jun 2021 08:51 AM IST

      Read more

      Week 9 Tension and Torsion test challenge

      Objective:

      SIMULATION OF TENSION AND TORSION TEST ON A SPECIMEN USING ANSYS WORKBENCH OBJECTIVE To perform the tension and torsion test simulation on the specimen by following the necessary boundary conditions, For the tension test, one end of the specimen has to be displaced to 18mm while keeping the other end fixed. For the torsion…

      calendar

      11 Jun 2021 11:10 AM IST

        Read more

        Week 9 Machining with Planer Challenge

        Objective:

        EXPLICIT DYNAMIC ANALYSIS OF MACHINING WITH PLANER USING ANSYS WORKBENCH OBJECTIVE To perform explicit dynamic analysis of machining with planer for the following two different cases of cutting velocity, Case-1: Cutting velocity=20000 mm/s Case-2: Cutting velocity=15000 mm/s To find out Directional Deformation, Equivalent…

        calendar

        06 Jun 2021 03:39 AM IST

          Read more

          Schedule a counselling session

          Please enter your name
          Please enter a valid email
          Please enter a valid number

          Related Courses

          coursecard

          Design loads considered on bridges

          Recently launched

          10 Hours of Content

          coursecard

          Design of Steel Superstructure in Bridges

          Recently launched

          16 Hours of Content

          coursecard

          Design for Manufacturability (DFM)

          Recently launched

          11 Hours of Content

          coursecard

          CATIA for Medical Product Design

          Recently launched

          5 Hours of Content

          coursecardcoursetype

          Accelerated Career Program in Embedded Systems (On-Campus) Courseware Partner: IT-ITes SSC nasscom

          Recently launched

          0 Hours of Content

          Schedule a counselling session

          Please enter your name
          Please enter a valid email
          Please enter a valid number

          logo

          Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.

          https://d27yxarlh48w6q.cloudfront.net/web/v1/images/facebook.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/insta.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/twitter.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/youtube.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/linkedin.svg

          Our Company

          News & EventsBlogCareersGrievance RedressalSkill-Lync ReviewsTermsPrivacy PolicyBecome an Affiliate
          map
          EpowerX Learning Technologies Pvt Ltd.
          4th Floor, BLOCK-B, Velachery - Tambaram Main Rd, Ram Nagar South, Madipakkam, Chennai, Tamil Nadu 600042.
          mail
          info@skill-lync.com
          mail
          ITgrievance@skill-lync.com

          Top Individual Courses

          Computational Combustion Using Python and CanteraIntroduction to Physical Modeling using SimscapeIntroduction to Structural Analysis using ANSYS WorkbenchIntroduction to Structural Analysis using ANSYS Workbench

          Top PG Programs

          Post Graduate Program in Hybrid Electric Vehicle Design and AnalysisPost Graduate Program in Computational Fluid DynamicsPost Graduate Program in CADPost Graduate Program in Electric Vehicle Design & Development

          Skill-Lync Plus

          Executive Program in Electric Vehicle Embedded SoftwareExecutive Program in Electric Vehicle DesignExecutive Program in Cybersecurity

          Trending Blogs

          Heat Transfer Principles in Energy-Efficient Refrigerators and Air Conditioners Advanced Modeling and Result Visualization in Simscape Exploring Simulink and Library Browser in Simscape Advanced Simulink Tools and Libraries in SimscapeExploring Simulink Basics in Simscape

          © 2025 Skill-Lync Inc. All Rights Reserved.

                      Do You Want To Showcase Your Technical Skills?
                      Sign-Up for our projects.