Placement 2025 Scholarship: Your Future Starts Here | 6 Guaranteed Job Interviews | Limited seats available. Apply Now

00D 00H 00M 00S

Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

All Courses

All Courses

logo

CHOOSE A CATEGORY

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

Top Job Leading Courses

Automotive

CFD

FEA

Design

MBD

Med Tech

Courses by Software

Design

Solver

Automation

Vehicle Dynamics

CFD Solver

Preprocessor

Courses by Semester

First Year

Second Year

Third Year

Fourth Year

Courses by Domain

Automotive

CFD

Design

FEA

Tool-focused Courses

Design

Solver

Automation

Preprocessor

CFD Solver

Vehicle Dynamics

Machine learning

Machine Learning and AI

POPULAR COURSES

coursePost Graduate Program in Hybrid Electric Vehicle Design and Analysis
coursePost Graduate Program in Computational Fluid Dynamics
coursePost Graduate Program in CAD
coursePost Graduate Program in CAE
coursePost Graduate Program in Manufacturing Design
coursePost Graduate Program in Computational Design and Pre-processing
coursePost Graduate Program in Complete Passenger Car Design & Product Development
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
share

Share

Mechanical

Modified on

03 Aug 2022 11:34 am

What is Tetra Meshing?

logo

Skill-Lync

Tetrahedral is a four- nodded solid element that can be generated through the tria element by creating a volume and also through the existing volume of the geometry. These elements are used where the geometry has high thickness and complexity. The image attached below is a representation of a Tetra element. The Tetra element will have 4 triangular faces with four nodes joining them together (refer to Fig 1).

 

                                                                                 

 

 Methods to Generate Tetra Meshing:

   Below are the three methods to generate Tetra Meshing:

 

  • Conversion of 2D tria to Tetrahedral Elements, by using Tetra Mesh panel.
  • Using the Quick Tetra Mesh, from the Utility panel.
  • Using the Volume Tetra Mesh panel.

As per the above classification, we are going to mesh a component and clear the Tet collapse value:

 

First Method: Conversion of 2D Tria Elements into Tetrahedral Elements, by using Tetra Mesh panel

 

Steps to be followed to generate Tetra Mesh:

  •  Import the Model into HyperMesh and clean the geometry.
  • Delete the solid from the model, by selecting the Delete→ Solid→ Delete entity.
  • Now perform the 2D meshing on the model, by selecting the Mesh type as “Trias”.

 

                                                                           

 

  •  After completing the 2D meshing, the model should be cleared with the Minimum and Maximum Elemental error (refer Fig 2)

 

                                                                             

 

  • Now the model is ready to perform the Tetra Meshing. Select the 3D→ tetramesh option.
  • In the tetra mesh panel, select the elements under the “Fixed trias/quads to tetra mesh” option 
  • After selecting the elements, click on the “Mesh” button (refer Fig 3).

 

                                                                          

 

                                                                           

 

  •   Once the Tetra Meshing was completed, mask a few elements to check the mesh generation.

                                                                           

 

                                                                  ("Pink color denotes Tetra Mesh”)

 

Second Method: Generating Tetra Mesh, by using “Quick Tetra Mesh, from the Utility panel”

 

Steps to be followed to generate Tetra Mesh:

  • Import the Model into HyperMesh and clean the geometry.
  • Delete the solid from the model, by selecting the Delete→ Solid→ Delete entity.
  • Click on the View→ Browsers→ HyperMesh→ Utility, as shown below:

                                     

                                                                             

 

  • Now select the Geom/Mesh from the “Utility Menu”, then click on the Quick TetraMesh  (refer Fig 4).

                                                                          

 

  • In the Quick Tetra tab, select the Components and Surface.
  1. Specify the Mesh size (as per the Quality mentioned).
  2. Then change the  Mesh type to “Trias only”.
  3. Click on the Mesh button to generate the Tetra Mesh (refer Fig 5).

                                                                              

                                                                                 

 

  • After completion of the Surface Mesh, a dialogue box will be popping up, as shown below:

                                                                                   

 

  • Click on the OK button to complete the Tetra Meshing Process. Meanwhile, a new component collector will be created in the Tab bar, which contains the tetrahedral elements (refer Fig 6).

     

                                                                                  

 

  • Completed image of tetra mesh, by using Quick tetra Mesh panel.

 

                                                                                 

 

Third Method: Generating Tetra Mesh, by using the Volume Tetra Mesh Panel

 

Steps to be followed to generate Tetra Mesh:

  •  Import the Model into HyperMesh and clean the geometry.
  • Keep the solid of the model, select 3D→ tetramesh.
  • Click on the Volume tetra option, and select the solid of the model (refer Fig 7).              
  1. Tick the checkboxes of “Use curvature” and “Use proximity”
  2. Specify the Minimum element size (as per the quality criteria).
  3. Then tick the checkbox of “Cleanup elements”.
  4. Click on the “Mesh” button to generate the Volume Tetra Mesh.

 

                                                                                        

 

  • Completed image of tetra mesh, by using the Volume Tetra Mesh Panel.

 

                                                                                      

 

Note: 

  • Reason for ticking the Checkbox - “Use Proximity”

                                                                                        

 

  • Reason for ticking the Checkbox - “Use Curvature”
     

It allows more Trias/ Tetras elements to be generated along the curved surfaces based on user-specified settings.

   

                                                                                               

 

  • Reason for ticking the Checkbox - “Cleanup elements”

It will apply an extra stage of calculation to improve the overall mesh quality by removing some nodes and combining elements. Meshing will fail if the shell elements of solids are present and are conflicting with the selection, when this occurs, the elements are cleaned up accordingly.

Example:

 

                                                                                                   

 

Hint: 

  1. Though the selection in Volume tetra, shows all the solids for meshing are selected in the status bar, it won't perform the Tetra Mesh for all the selected solids, unless and until the checkbox for “Cleanup elements” is ticked.
  2. Though the feature capturing is more in detail by ticking the checkbox of “Use Proximity” and “Use Curvature”, we will have more elements in the curvatures. Due to this, the element size will be smaller and they will be prone to tet collapse failure. So care has to be taken while using these two options.

                                                                                                   

                                                                                                    

 

What is Tet Collapse?

 

Tet collapse is one of the quality parameters, which will be checked while generating Tetrahedral elements. It can be calculated by measuring the distance of a node from the opposite face, and then each of the four values will be divided by the Square root of the opposite face’s area. The minimum of four resulting values is then normalized by dividing it by 1.24.  

Generally, tet collapse can be calculated by the formula = Min of (h/√A) ÷ 1.24

In that formula,

                         “h” represents the Height, between the Node (N1) and the opposite face of the Triangle.

                         “A” represents the Area of the Opposite Face (area of the Triangle).

 

                                                                                                     

 

Methods to clear Tet collapse:

 There are two methods to clear the Tet collapse as stated below:

  1. Using the “translate” command, to increase the height.
  2. Using the “Tetra remesh” panel, to remesh failed elements.

First Method: Use the “translate” command, to increase the height.

 Steps to be followed to clear the tet collapse:

  • After completing the Tetra Mesh, check for the failed element.
  • Select Tools→ check elems→ 3D→ tet collapse.
  • In the status bar, it will show how many failed elements are present in the model.

    

                                                                                                   

  • Click on the “save failed” option to save the tet collapse failed elements (refer Fig 8).

 

                                                                                                  

  • Isolate the failed elements, by clicking on “Mask” option                                                        
  • Then right-click on “elements”, to select the “retrieve” option.
  • This will automatically select the failed elements as your masking entities.
  • Click on the “mask” to hide the failed elements, then select the “reverse” option to show only the failed elements in the HyperMesh GUI (refer Fig 9).

 

                                                                                                 

 

  • Now to clear the Tet collapse, select the Tools→ translate command.
  • Manually inspect the failed element and do the following procedure:

 

  1. Pick a node in any one failed element, which has minimum height.
  2. Select N1, N2, and N3 which represent the opposite plane of the prior selected node.
  3. Choose the magnitude value approximately by trial and error method.
  4. Click on the “translate” button to move the node (refer Fig 10).

                                                                  

                                                                                             

 

 

                                                                                             

 

  • After correcting the failed element, parallelly check the Tet collapse value in the “check elems” option.

 

                                                                                            

 

                                                                                                 

 

Second Method: Using the “Tetra remesh” panel, to remesh failed elements.

Steps to be followed to clear the tet collapse:

  • After completing the Tetra Mesh, check for the failed element.
  • Select Tools→ check elems→ 3D→ tet collapse.
  • In the status bar, it will show how many failed elements are present in the model.

                                                                                         

                                                                                             

 

  • Now go to the Tools→ tetramesh→ Tetramesh parameters, to specify the tet collapse value.
  • Tick the checkbox of “Max tetra size” and “Min tetra size”, to specify the limit of the tetra mesh size.
  • Under “Elem quality target”, enter the target tet collapse value and tick the checkbox of fill voids, fix midnodes, and smoothing (refer Fig 11).

                                                               

                                                                                            

 

                                                                                            

 

  • Once, after setting the “Tetramesh parameters”, select the “Tetra remesh” option.
  • Select the “3D elements” and “2D baffle elems” for re-meshing the model.
  • Click on the “remesh” button, to clear the failed elements (refer Fig 12).

                                  

                                                                                              

  • To ensure the Tet collapse quality, check the failed elements in the “check elems” option.
  • In the status bar, now it will show the 0% failed elements as shown below:

   

                                                                                               

 

Note: 

  • We can select the “3D elements” and “2D baffle elems” under Tetra remesh panel, only when we choose the “Conversion of 2D tria to Tetrahedral Elements, by using Tetra Mesh panel (First method)” and “Using the Quick Tetra Mesh, from the Utility panel (Second method)”.
  • For “Using the Volume Tetra Mesh panel (Third method)”, we have to select only the “3D elements” under Tetra remesh panel, since we have the 3D mesh alone in the model.

 

                                                                                                

 

Hint: 

    Before working on the Tetramesh panel, it is advisable to fix the “Tetramesh parameters”.


Author

author

Navin Baskar


Author

blogdetails

Skill-Lync

Subscribe to Our Free Newsletter

img

Continue Reading

Related Blogs

Shock tube simulation

Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.

Mechanical

10 May 2020


Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020


Realizing Connectors In HyperMesh

A connector is a mechanism that specifies how an object (vertex, edge, or face) is connected to another object or the ground. By often simulating the desired behaviour without having to build the precise shape or specify contact circumstances, connectors make modeling simpler.

Mechanical

03 Aug 2022


Mesh Sizing In Ansys Workbench

One of the most crucial processes in carrying out an accurate simulation using FEA is meshing. A mesh is composed of elements that have nodes—coordinate positions in space that might change depending on the element type—that symbolise the geometry's shape.

Mechanical

04 Aug 2022


The Major Injection Molding Defects

Making injection molded prototypes requires high levels of technical expertise and attention to detail. This is to prevent small mistakes from costing companies big money when it comes to mass-production of parts that are being manufactured.

Mechanical

06 Aug 2022



Author

blogdetails

Skill-Lync

Subscribe to Our Free Newsletter

img

Continue Reading

Related Blogs

Shock tube simulation

Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.

Mechanical

10 May 2020


Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020


Realizing Connectors In HyperMesh

A connector is a mechanism that specifies how an object (vertex, edge, or face) is connected to another object or the ground. By often simulating the desired behaviour without having to build the precise shape or specify contact circumstances, connectors make modeling simpler.

Mechanical

03 Aug 2022


Mesh Sizing In Ansys Workbench

One of the most crucial processes in carrying out an accurate simulation using FEA is meshing. A mesh is composed of elements that have nodes—coordinate positions in space that might change depending on the element type—that symbolise the geometry's shape.

Mechanical

04 Aug 2022


The Major Injection Molding Defects

Making injection molded prototypes requires high levels of technical expertise and attention to detail. This is to prevent small mistakes from costing companies big money when it comes to mass-production of parts that are being manufactured.

Mechanical

06 Aug 2022


Book a Free Demo, now!
Know more about our Engineering courses with Job Assistance!

Related Courses

https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/masters-cfd_1636550988.jpg
Post Graduate Program in Computational Fluid Dynamics
4.8
125 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/combustion-cfd-specialisation_1636553169.png
Combustion CFD Specialist
4.8
35 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/masters-cfd_1636550988.jpg
Post Graduate Program in Computational Fluid Dynamics
4.8
125 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/computational-combustion-python-cantera_1636553291.png
Computational Combustion Using Python and Cantera
4.9
9 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/flow-simulation-solidworks_1612265422.jpg
Flow Simulation using SolidWorks
4.7
2 Hours of content
Cfd Domain
Know more
//edxengine-live-courses-files.s3.amazonaws.com/1508988009.png
Advanced CFD using OpenFOAM
Recently launched
18 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/flow-simulation-solidworks_1612265422.jpg
Flow Simulation using SolidWorks
4.7
2 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/advanced-cfd-ansys-fluent_1636552965.jpg
Introduction to GUI based CFD using ANSYS Fluent
4.7
16 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/internal-combustion-engine-analyst-specialisation_1636553026.png
Internal Combustion Engine Analyst course using Python and Cantera
4.8
22 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/preprocessor-structural-analysis-ansa_1727940832.jpg
Preprocessor for Structural Analysis using ANSA
4.7
18 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/advanced-cfd-ic-engine-applications_1636552997.jpg
Advanced CFD for IC Engine Applications using CONVERGE
4.8
13 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/introduction-cfd-matlab-openfoam_1636552778.jpg
Introduction to CFD using MATLAB and OpenFOAM
4.8
13 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/ic-engine-calibration-gt-power-gt-suite_1636553072.jpg
IC Engine Calibration using GT-POWER and GT-SUITE
4.8
19 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/advanced-turbomachinery-simulations_1636553239.jpg
Advanced Turbomachinery Simulations using CONVERGE
4.6
11 Hours of content
Cfd Domain
Know more
https://skill-lync-portal-nyc3.s3.ap-south-1.amazonaws.com/maincourse/thumb/15942014608.png
CFD Simulation using SolidWorks
4.3
2 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/mainproject/thumb/pedestrain-head-impact-simulation-using-ls-dyna_1616574080.jpg
Pedestrain Head impact simulation using LS-DYNA
Recently launched
0 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/mainproject/thumb/elasto-plastic-material-modelling-and-validation-using-ls-dyna_1616584106.jpg
Elasto-plastic material modelling and validation using LS-DYNA
Recently launched
0 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/mainproject/thumb/flow-over-mbactros-truck_1616159835.jpg
Flow over a Mercedes Benz Actros Truck using StarCCM+
Recently launched
0 Hours of content
Cfd Domain
Know more
logo

Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.

https://d27yxarlh48w6q.cloudfront.net/web/v1/images/facebook.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/insta.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/twitter.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/youtube.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/linkedin.svg

Our Company

News & EventsBlogCareersGrievance RedressalSkill-Lync ReviewsTermsPrivacy PolicyBecome an Affiliate
map
EpowerX Learning Technologies Pvt Ltd.
4th Floor, BLOCK-B, Velachery - Tambaram Main Rd, Ram Nagar South, Madipakkam, Chennai, Tamil Nadu 600042.
mail
info@skill-lync.com
mail
ITgrievance@skill-lync.com

Top Individual Courses

Computational Combustion Using Python and CanteraIntroduction to Physical Modeling using SimscapeIntroduction to Structural Analysis using ANSYS WorkbenchIntroduction to Structural Analysis using ANSYS Workbench

Top PG Programs

Post Graduate Program in Hybrid Electric Vehicle Design and AnalysisPost Graduate Program in Computational Fluid DynamicsPost Graduate Program in CADPost Graduate Program in Electric Vehicle Design & Development

Skill-Lync Plus

Executive Program in Electric Vehicle Embedded SoftwareExecutive Program in Electric Vehicle DesignExecutive Program in Cybersecurity

Trending Blogs

Top 10 Mechanical Engineering Courses in 2025 Governors & Bearings Explained Simply - Mechanical Engineering Interview Questions Fundamentals of Engineering Thermodynamics & Entropy | Mechanical Engineering Interview Questions Top-Rated Mechanical Design Courses: Your Fast-Track to High-Paying Jobs in 2025 Is Studying Engineering and Becoming an Engineer Worth It? A Comprehensive Guide

© 2025 Skill-Lync Inc. All Rights Reserved.

              Get Free Access to Resume-Building Resources.