Placement 2025 Scholarship: Your Future Starts Here | 6 Guaranteed Job Interviews | Limited to 100 seats. Apply Now

07D 22H 20M 12S

Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

All Courses

All Courses

logo

CHOOSE A CATEGORY

Mechanical

Electrical

Civil

Computer Science

Electronics

Offline Program

Top Job Leading Courses

Automotive

CFD

FEA

Design

MBD

Med Tech

Courses by Software

Design

Solver

Automation

Vehicle Dynamics

CFD Solver

Preprocessor

Courses by Semester

First Year

Second Year

Third Year

Fourth Year

Courses by Domain

Automotive

CFD

Design

FEA

Tool-focused Courses

Design

Solver

Automation

Preprocessor

CFD Solver

Vehicle Dynamics

Machine learning

Machine Learning and AI

POPULAR COURSES

coursePost Graduate Program in Hybrid Electric Vehicle Design and Analysis
coursePost Graduate Program in Computational Fluid Dynamics
coursePost Graduate Program in CAD
coursePost Graduate Program in CAE
coursePost Graduate Program in Manufacturing Design
coursePost Graduate Program in Computational Design and Pre-processing
coursePost Graduate Program in Complete Passenger Car Design & Product Development
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
share

Share

Mechanical

Modified on

05 Feb 2021 01:49 pm

Shock tube simulation

logo

Skill-Lync

Imagine a calm pool of water. Now what do you think will happen when a stone is thrown in the centre of it? It will generate concentric ripples from the point of impact, right? This is what a shock wave looks like. In this project, we are going to set up the geometry of a shock tube and simulate a shock wave inside it to study its movement patterns and how it affects the gasses inside the tube.

 

Main Objective

To setup a transient shock tube simulation and plot the:

  • Pressure and temperature history in the entire domain
  • Cell count as a function of time

 

Theoretical background:

Shock tube is a device which is used to produce and confine shock waves. It contains a diaphragm that separates a high pressure and a low pressure section. When the pressure ratio between the two sections is maintained at sufficient levels and the diaphragm is ruptured, a shock wave propagates through the low pressure region.

When the diaphragm bursts, it creates compression waves which propagate in the low pressure section and expansion waves which traverse in the high pressure section. After a short interval of time, the compression waves in the low pressure region will merge to form a shock wave. The stationary gases in the low pressure area will experience raise in pressure and temperature due to the formation of shock waves and they will start moving towards the walls of the tube. Since the shock wave travel at supersonic speeds, it generates an expansion fan. An expansion fan consists of infinite number of mach waves that diverge from a sharp corner. Both the expansion fan and the shock waves are reflected from the closed ends of the tube. When the shock wave hits the closed end of the tube, it gets reflected back. This reflected shock wave cancels the motion of the gases in the low pressure section initiated by the primary shock wave. The strength of the shock wave and expansion fan depends on the initial pressure ratio across the diaphragm and physical properties of the gases present in the tube.

 

 

Geometry:

The pre-modelled geometry was imported into Converge and the geometry was inspected for any surface errors or open edges. After fixing all the errors, the boundaries were flagged and the case was setup.

Shock Tube Dimensions:

Length of the tube (along x axis) = 0.2 m

Height of the tube (along y axis) = 0.01 m

Width of the tube (along z axis) = 0.01 m

 

Initial conditions and Regions:

Region 0 – High Pressure Region [ Green Region]

Medium = N2

Temperature = 300 K

Pressure = 600000 Pa

Region 1 – Low Pressure Region [ Brown Region]

Medium = O2

Temperature = 300 K

Pressure = 101325 Pa

Events:

At 0 sec,

High pressure and Low Pressure →→ Closed

At 0.001 sec,

High Pressure and Low Pressure →→ Open

This type of event is defined to replicate the action of diaphragm rupture.

 

Boundary Conditions:

 

High Pressure Region (Region 0)

At Top and End Walls:

Dirichlet Temperature Boundary Condition, T =300 K

Law of the wall Velocity Boundary Condition

At Front and Back Wall – 2 D

 

Low Pressure Region (Region 1)

At Top and End Walls:

Dirichlet Temperature Boundary Condition, T =300 K

Law of the wall Velocity Boundary Condition

At Front and Back Wall – 2 D

 

Simulation Time Parameters:

Start Time: 0 sec

End Time: 0.03 sec

Solver: Transient Solver

Physical Models: Turbulence Model – RNG k-εε

 

Geometry Mesh:

The geometry was meshed using Cartesian mesh elements. Mesh size of 1mm was provided in X, Y, Z directions.

 

When the flow concentration or species concentration is high in certain areas of the geometry, Automatic Mesh Refinement (AMR) is performed in such areas. In our project, Species AMR was provided with a maximum embedding level of 3 and sub-grid scale criteria as 0.001.

 

 

The adaptive mesh refinement can be observed from the below mesh animation.

 

  

 Results:

  1. Velocity and Nitrogen Mass Fraction variation across the shock tube

 

 

 

The above animation manages to capture the effect of the shock and expansion fans on the motion of the Nitrogen gas.

The shock waves generated due to diaphragm rupture, pushes the nitrogen gases towards the low pressure region. But before the gases could reach the other end of tube, the reflected shock wave pushes the N2 gases in the opposite direction, changing the flow of the N2 gases. That wave is again reflected from the other end of the tube pushing the N2 gases in opposite direction. The process continues till the intensity of the shock waves abates.

 

  1. Pressure Variations

The initial pressure of 6 bar in high pressure region and 1 bar in low pressure region reaches a steady pressure of 3.4 bar at the end of 0.02 sec. The same can be visualized from the below animation.

 

 

 

 

  1. Temperature Variations

The mean temperatures at the high pressure region (Region 0), Low pressure region (Region 1) and the shock tube was plotted as the function of simulation time. At the end of the simulation, the Region 1 was at a mean temperature of 303k; the Region 0 at a mean temperature of 275 k and the entire shock tube was at a mean temperature of 286 K.

 

 

  1. Total Cell Count

The total cell count as a function of time is plotted. For the first 0.001 sec where the diaphragm is intact, the total cell count remains constant at 2000 cells. After which the diaphragm is broken and the effect of species adaptive mesh refinement can be observed. The total cell count varies continuously during this period and a maximum cell count of 14200 was recorded.

 

 

Conclusion:

By replicating the flow of gases in the presence of a shock wave, we can measure parameters such as rates of chemical kinetics, dissociation energies etc. By modifying the design of the shock tube, we can also simulate hypersonic flow that occurs during cases such as atmospheric re-entry of spacecraft etc.


Author

author

SarangarajanV


Author

blogdetails

Skill-Lync

Subscribe to Our Free Newsletter

img

Continue Reading

Related Blogs

Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020


What is Tetra Meshing?

Tetrahedral is a four- nodded solid element that can be generated through the tria element by creating a volume and also through the existing volume of the geometry. These elements are used where the geometry has high thickness and complexity. The image attached below is a representation of a Tetra element. The Tetra element will have 4 triangular faces with four nodes joining them together

Mechanical

02 Aug 2022


Realizing Connectors In HyperMesh

A connector is a mechanism that specifies how an object (vertex, edge, or face) is connected to another object or the ground. By often simulating the desired behaviour without having to build the precise shape or specify contact circumstances, connectors make modeling simpler.

Mechanical

03 Aug 2022


Mesh Sizing In Ansys Workbench

One of the most crucial processes in carrying out an accurate simulation using FEA is meshing. A mesh is composed of elements that have nodes—coordinate positions in space that might change depending on the element type—that symbolise the geometry's shape.

Mechanical

04 Aug 2022


The Major Injection Molding Defects

Making injection molded prototypes requires high levels of technical expertise and attention to detail. This is to prevent small mistakes from costing companies big money when it comes to mass-production of parts that are being manufactured.

Mechanical

06 Aug 2022



Author

blogdetails

Skill-Lync

Subscribe to Our Free Newsletter

img

Continue Reading

Related Blogs

Design of Frontal BIW enclosure of a car (Bonnet)

In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.

Mechanical

10 May 2020


What is Tetra Meshing?

Tetrahedral is a four- nodded solid element that can be generated through the tria element by creating a volume and also through the existing volume of the geometry. These elements are used where the geometry has high thickness and complexity. The image attached below is a representation of a Tetra element. The Tetra element will have 4 triangular faces with four nodes joining them together

Mechanical

02 Aug 2022


Realizing Connectors In HyperMesh

A connector is a mechanism that specifies how an object (vertex, edge, or face) is connected to another object or the ground. By often simulating the desired behaviour without having to build the precise shape or specify contact circumstances, connectors make modeling simpler.

Mechanical

03 Aug 2022


Mesh Sizing In Ansys Workbench

One of the most crucial processes in carrying out an accurate simulation using FEA is meshing. A mesh is composed of elements that have nodes—coordinate positions in space that might change depending on the element type—that symbolise the geometry's shape.

Mechanical

04 Aug 2022


The Major Injection Molding Defects

Making injection molded prototypes requires high levels of technical expertise and attention to detail. This is to prevent small mistakes from costing companies big money when it comes to mass-production of parts that are being manufactured.

Mechanical

06 Aug 2022


Related Courses

https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/matlab-python-cfd-solidworks_1612350558.png
MATLAB Python and CFD using Solidworks for Mechanical Engineering Applications
4.7
13 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/mechanical-engineering-essentials-program_1612245217.jpg
Mechanical Engineering Essentials Program
4.7
21 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/masters-automation-pre-processing-fea-cfd-analysis_1636552743.jpg
Post Graduate Program in Automation & Pre-Processing for FEA & CFD Analysis
4.7
81 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/masters-cae_1636551107.png
Post Graduate Program in CAE
4.7
149 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/matlab-mechanical-engineers_1636551918.png
MATLAB for Mechanical Engineers
4.7
5 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/matlab-python-cfd-solidworks_1612350558.png
MATLAB Python and CFD using Solidworks for Mechanical Engineering Applications
4.7
13 Hours of content
Cfd Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/ls-dyna-structural-mechanics-fea_1727940447.jpg
LS-DYNA for Structural Mechanics/FEA
4.8
19 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/multibody-dynamics-solidworks_1727940492.jpg
Multibody Dynamics using SolidWorks
4.7
3 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/masters-automation-pre-processing-fea-cfd-analysis_1636552743.jpg
Post Graduate Program in Automation & Pre-Processing for FEA & CFD Analysis
4.7
81 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/vehicle-dynamics-matlab_1636606203.png
Vehicle Dynamics using MATLAB
4.8
37 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/hypermesh-fea-plastic-sheet-metal-applications_1727940616.jpg
HyperMesh for FEA Plastic and Sheet Metal Applications
4.7
19 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/maincourse/thumb/cae-simulation-solidworks_1612352726.png
CAE Simulation using SolidWorks
Recently launched
2 Hours of content
Cae Domain
Know more
https://d28ljev2bhqcfz.cloudfront.net/mainproject/thumb/correcting-the-normals-for-hypermesh-file-by-using-the-tcl_1616584549.jpg
Correcting the normals for hypermesh file by using the TCL
Recently launched
0 Hours of content
Cae Domain
Know more
logo

Skill-Lync offers industry relevant advanced engineering courses for engineering students by partnering with industry experts.

https://d27yxarlh48w6q.cloudfront.net/web/v1/images/facebook.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/insta.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/twitter.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/youtube.svghttps://d27yxarlh48w6q.cloudfront.net/web/v1/images/linkedin.svg

Our Company

News & EventsBlogCareersGrievance RedressalSkill-Lync ReviewsTermsPrivacy PolicyBecome an Affiliate
map
EpowerX Learning Technologies Pvt Ltd.
4th Floor, BLOCK-B, Velachery - Tambaram Main Rd, Ram Nagar South, Madipakkam, Chennai, Tamil Nadu 600042.
mail
info@skill-lync.com
mail
ITgrievance@skill-lync.com

Top Individual Courses

Computational Combustion Using Python and CanteraIntroduction to Physical Modeling using SimscapeIntroduction to Structural Analysis using ANSYS WorkbenchIntroduction to Structural Analysis using ANSYS Workbench

Top PG Programs

Post Graduate Program in Hybrid Electric Vehicle Design and AnalysisPost Graduate Program in Computational Fluid DynamicsPost Graduate Program in CADPost Graduate Program in Electric Vehicle Design & Development

Skill-Lync Plus

Executive Program in Electric Vehicle Embedded SoftwareExecutive Program in Electric Vehicle DesignExecutive Program in Cybersecurity

Trending Blogs

Heat Transfer Principles in Energy-Efficient Refrigerators and Air Conditioners Advanced Modeling and Result Visualization in Simscape Exploring Simulink and Library Browser in Simscape Advanced Simulink Tools and Libraries in SimscapeExploring Simulink Basics in Simscape

© 2025 Skill-Lync Inc. All Rights Reserved.

              Get Free Access to Resume-Building Resources.